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Schelde Estuary

Q = 100 m3 s−1

macrotidal

Across = 4000 m2 to 75000 m2

D = 6 to 14 m

V = 3.6 109 m3

Asurf = 338 km2
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Rationales for a Model

The model should be a tool to obtain yearly
averaged whole estuarine nitrogen and
carbon budgets for the years 2001 to 2004
that can be compared to earlier decades.

The model should be as simple as possible
but still fitting the data sufficiently to indentify
the main driving processes in the rather
complex ecosystem Schelde estuary.

The model should maintain the right balance
between the complexity of the representation
of physical (transport) processes and
biogeochemical processes.
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1-D Reactive-Transport Model
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1-D Reactive-Transport Model

d[FastOM]

dt
= TrFastOM−ROxFastOM−RDenFastOM + RPP

d[SlowOM]

dt
= TrSlowOM−ROxSlowOM−RDenSlowOM

d[DOC]

dt
= TrDOC

d[O2]

dt
= TrO2

+ EO2
− ROxCarb − 2·RNit + (2 − 2 · pPP

NH+
4

)·RPP + RPPCarb

d[NO−3 ]

dt
= Tr

NO−3
− 0.8·RDenCarb + RNit − (1 − pPP

NH+
4

)·RPP
d[S]

dt
= TrS

d[
∑

CO2]

dt
= Tr∑CO2

+ ECO2
+ ROxCarb + RDenCarb − RPPCarb

d[
∑

NH+
4 ]
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= Tr∑NH3

+ ROx + RDen − RNit − pPP
NH+

4

· RPP

d[
∑

HSO−4 ]
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HSO−4
d[
∑

B(OH)3]
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= Tr∑B(OH)3

d[
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HF]
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= Tr∑HF

d[TA]
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= TrTA + ROx + 0.8·RDenCarb + RDen − 2· RNit − (2 · pPP
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Model Fit (yearly avg. longitudinal profiles)
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Longitudinal profiles
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Longitudinal profiles
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Nitrogen Budget (Gmol year−1)
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Nitrogen - now and then

Nitrification

increased from the ’70 to the ’80 (Soetaert and Herman,
1995)

decreased significantly from the ’80 to the ’00

this indicates a shift from oxygen to ammonium limitation from
the ’70 to the ’00

a similar shift as has happened in time can be seen
longitudinally in our model

Denitrification
continuously decreased from the ’70 over the ’80 to the ’00
(Billen et al., 1985; Soetaert and Herman, 1995)

:

decade ′70 ′80 ′00

Gmol N y−1 imported into the Schelde 3.7 4.7 2.5

% of total N lost to the atmosphere 40 23 10

Gmol N y−1 exported to the North Sea 1.9 3.6 2.4
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Carbon Budget (Gmol year−1)
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Carbon - now and then

CO2 degassing: 3.3 Gmol year−1

67 % of which is due to ventilation of riverine
DIC (based on model runs without biology)

For the ’90, values are up to 4 times as high
(e.g. Frankignoulle et al., 1998; Hellings et al.,
2001; Vanderborght et al., 2002)

That indicates a decrease in CO2 degassing
from the ’90 to the ’00 most likely due to
reduced riverine C loadings and decreased
nitrification (higher pH, lower [CO2])

However, there are large uncertainties
associated with CO2 degassing estimations.
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Carbon - uncertainties

Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO2 degassing on
riverine discharge)

Uncertainties in estuarine surface area
estimations

Former overestimations of piston velocities

Employment of estimation techniques not
relying on a mechanistic model with rigorous
mass budgeting



12/13

Carbon - uncertainties

Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO2 degassing on
riverine discharge)

Uncertainties in estuarine surface area
estimations

Former overestimations of piston velocities

Employment of estimation techniques not
relying on a mechanistic model with rigorous
mass budgeting



12/13

Carbon - uncertainties

Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO2 degassing on
riverine discharge)

Uncertainties in estuarine surface area
estimations

Former overestimations of piston velocities

Employment of estimation techniques not
relying on a mechanistic model with rigorous
mass budgeting



12/13

Carbon - uncertainties

Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO2 degassing on
riverine discharge)

Uncertainties in estuarine surface area
estimations

Former overestimations of piston velocities

Employment of estimation techniques not
relying on a mechanistic model with rigorous
mass budgeting



13/13

Summary

Nitrification peaked in the ’80 due to a shift
from oxygen limitation to ammonium
limitation.

Denitrification continuously decreased,
reducing the N filtering capacity of the
estuary. This means that the N export to
North sea is higher in the ’00 than in the ’70
although the N input into the estuary almost
halved.

CO2 degassing from the estuary decreased
since the ’90, however there are severe
uncertainties associated with CO2 degassing
estimates.
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Thank you for your attention!
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Kinetic Reactions

ROx : (CH2O)γ (NH3 )+γO2 → NH3+γCO2+γH2O
RDen : (CH2O)γ (NH3 )+0.8γNO−

3
+ 0.8γH+ → NH3+γCO2+0.4γN2 ↑ +1.4γ H2O

RNit : NH3+2 O2 → NO−
3

+H2O+H+

RP P : pP P

NH+

4

NH+
4

+
(
1 − pP P

NH+

4

)
NO−

3
+ γCO2 +

(
1 + γ − pP P

NH+

4

)
H2O → (CH2O)γ (NH3) +

(
2 + γ − 2pP P

NH+

4

)
O2 +

(
2pP P

NH+

4

− 1

)
H+
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Variable Piston Velocity
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Variable Piston Velocity
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Variable Piston Velocity
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Advective flow increase
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1993; Holland, 1991))
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Transport Formulation

TrC =
∂[C]

∂t

∣∣∣∣∣
Adv-Disp

=
1

A

(
∂

∂x

(
E A

∂[C]

∂x

)
− ∂

∂x
(Q [C])

)

discretised to

TrC

∣∣
i
≈
(
E′i−1,i

(
[C]i−1 − [C]i

)
− E′i,i+1

(
[C]i − [C]

i+1

)

+Qi−1,i [C]i−1 −Qi,i+1 [C]i

)
· Vi−1

with

E′i−1,i = Ei−1,i Ai−1,i (∆xi−1,i)
−1
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