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Rationales for a Model

B The model should be a tool to obtain yearly
averaged whole estuarine nitrogen and
carbon budgets for the years 2001 to 2004
that can be compared to earlier decades.

B The model should be as simple as possible
but still fitting the data sufficiently to indentify
the main driving processes in the rather
complex ecosystem Schelde estuary.

B The model should maintain the right balance
between the complexity of the representation
of physical (transport) processes and
biogeochemical processes.
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N itrogen BUdget (Gmol year™1)
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Nitrogen - now and then

B Nitrification

m increased from the '70 to the '80 (Soetaert and Herman, 1995)

m decreased signifi cantly from the '80 to the '00

m this indicates a shift from oxygen to ammonium limitation from

the '70 to the '00

m a similar shift as has happened in time can be seen

longitudinally in our model

B Denitrification

m continuously decreased from the 70 over the '80 to the '00

(Billen et al., 1985; Soetaert and Herman, 1995):

decade 70 80 '00
GmolNy~! imported into the Schelde 3.7 4.7 2.5
% of total N lost to the atmosphere 40 23 10
GmolNy~! exported to the North Sea 1.9 3.6 2.4
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Carbon BUdg@t (Gmol year™1)
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m CO, degassing: 3.3 Gmol year ™!

B 67 % of which is due to ventilation of riverine
DIC (based on model runs without biology)

B For the '90, values are up to 4 times as high
(e.q. |—ranK|gnouue et al., 1998; Hellings et al.,

AUUJ. vanuemorunt cl al., £UUZ

B That indicates a decrease in CO, degassing
from the 90 to the 00 most likely due to
reduced riverine C |loadings and decreased
nitrification (higher pH, lower [CO,])

B However, there are large uncertainties
associated with CO, degassing estimations.



Carbon - uncertainties

B Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO, degassing on
riverine discharge)

12/13



Carbon - uncertainties

B Differences in riverine discharge at the time of
the estimates (model experiments confirmed

a strong dependency of CO, degassing on
riverine discharge)

B Uncertainties Iin estuarine surface area
estimations

12/13



Carbon - uncertainties

B Differences in riverine discharge at the time of
the estimates (model experiments confirmed

a strong dependency of CO, degassing on
riverine discharge)

B Uncertainties Iin estuarine surface area
estimations

B Former overestimations of piston velocities

12/13



Carbon - uncertainties

B Differences in riverine discharge at the time of
the estimates (model experiments confirmed
a strong dependency of CO, degassing on
riverine discharge)

B Uncertainties Iin estuarine surface area
estimations

B Former overestimations of piston velocities

B Employment of estimation techniques not
relying on a mechanistic model with rigorous
mass budgeting
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Summary

B Nitrification peaked in the 80 due to a shift
from oxygen limitation to ammonium
limitation.

B Denitrification continuously decreased,
reducing the N filtering capacity of the
estuary. This means that the N export to
North sea is higher in the '00 than in the '70
although the N input into the estuary almost
halved.

B CO, degassing from the estuary decreased
since the 90, however there are severe
uncertainties associated with CO, degassing
estimates.
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Kinetic Reactions
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Variable Piston Velocity
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Advective flow Increase
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